Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.864
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1138-H1145, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426867

RESUMO

Daylight saving time (DST) is a Western biannual time transition, setting the clock back 1 h in the fall and forward 1 h in the spring. There is an epidemiological link between DST and acute myocardial infarction risk in the first week following the spring shift; however, the mechanisms underlying the effect of DST on cardiovascular function remain unclear. The purpose of this study was to explore the short-term cardiovascular changes induced by fall and spring shifts in DST in a convenience sample of healthy adults. We hypothesized that spring, but not fall, DST shifts would acutely increase central pulse wave velocity, the gold standard measurement of central arterial stiffness. Twenty-one individuals (fall: n = 10; spring: n = 11) participated in four visits, occurring 1 wk before and at +1, +3, and +5 days after spring and fall time transitions. Central, brachial, and radial pulse wave velocity as well as carotid augmentation index were assessed with applanation tonometry. Sleep quality and memory function were assessed via questionnaire and the Mnemonic Similarities Task, respectively. Neither fall or spring transition resulted in changes to cardiovascular variables (carotid-femoral pulse wave velocity, carotid-brachial pulse wave velocity, carotid-radial pulse wave velocity, heart rate, mean arterial pressure, or augmentation index), sleep quality, or cognitive function (all P > 0.05). Our findings do not provide evidence that DST shifts influence cardiovascular outcomes in healthy adults. This study emphasizes the need for further research to determine the mechanisms of increased cardiovascular disease risk with DST that help explain epidemiological trends.NEW & NOTEWORTHY The debate of whether to abolish daylight savings time (DST) is, in part, motivated by the population-level increase in all-cause mortality and incidence of cardiovascular events following DST; however, there is an absence of data to support a physiological basis for risk. We found no changes in pulse wave velocity or augmentation index during the subacute window of DST. Large multisite trials are necessary to address the small, but meaningful, effects brought on by a societal event.


Assuntos
Infarto do Miocárdio , Rigidez Vascular , Adulto , Humanos , Análise de Onda de Pulso , Pressão Arterial/fisiologia , Artérias Carótidas/fisiologia , Artéria Braquial/fisiologia , Rigidez Vascular/fisiologia , Pressão Sanguínea/fisiologia
2.
J Mech Behav Biomed Mater ; 153: 106494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507995

RESUMO

Collagen fiber arrangement is decisive for constitutive description of anisotropic mechanical response of arterial wall. In this study, their orientation in human common carotid artery was investigated using polarized light microscopy and an automated algorithm giving more than 4·106 fiber angles per slice. In total 113 slices acquired from 18 arteries taken from 14 cadavers were used for fiber orientation in the circumferential-axial plane. All histograms were approximated with unimodal von Mises distribution to evaluate dominant direction of fibers and their concentration parameter. 10 specimens were analyzed also in circumferential-radial and axial-radial planes (2-4 slices per specimen in each plane); the portion of radially oriented fibers was found insignificant. In the circumferential-axial plane, most specimens showed a pronounced unimodal distribution with angle to circumferential direction µ = 0.7° ± 9.4° and concentration parameter b = 3.4 ± 1.9. Suitability of the unimodal fit was confirmed by high values of coefficient of determination (mean R2 = 0.97, median R2 = 0.99). Differences between media and adventitia layers were not found statistically significant. The results are directly applicable as structural parameters in the GOH constitutive model of arterial wall if the postulated two fiber families are unified into one with circumferential orientation.


Assuntos
Artérias Carótidas , Matriz Extracelular , Humanos , Artérias Carótidas/fisiologia , Túnica Adventícia , Algoritmos , Estresse Mecânico , Fenômenos Biomecânicos , Colágeno/química
3.
J Am Heart Assoc ; 13(5): e029771, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420836

RESUMO

BACKGROUND: Impaired arterial health is associated with a decline in cognitive function and psychopathology in adults. We hypothesized that these associations originate in early life. We examined the associations of blood pressure, common carotid artery intima media thickness, and carotid distensibility with behavior and cognitive outcomes during adolescence. METHODS AND RESULTS: This study was embedded in the Dutch Generation R Study, a population-based prospective cohort study from early fetal life onwards. Blood pressure, carotid intima media thickness, and carotid distensibility were measured at the age of 10 years. At the age of 13 years, total, internalizing and externalizing problems and attention-deficit hyperactivity disorder symptoms were measured using the parent-reported Child Behavior Checklist (CBCL/6-18), autistic traits were assessed by the Social Responsiveness Scale, and IQ was assessed using the Wechsler Intelligence Scale for Children-Fifth Edition. A 1-SD score higher mean arterial pressure was associated with lower odds of internalizing problems (odds ratio [OR], 0.92 [95% CI, 0.85-0.99]). However, this association was nonsignificant after correction for multiple testing. Carotid intima media thickness and carotid distensibility were not associated with behavior and cognitive outcomes at 13 years old. CONCLUSIONS: From our results, we cannot conclude that the associations of blood pressure, carotid intima media thickness, and carotid distensibility at age 10 years with behavior and cognitive outcomes are present in early adolescence. Further follow-up studies are needed to identify the critical ages for arterial health in relation to behavior and cognitive outcomes at older ages.


Assuntos
Artérias Carótidas , Espessura Intima-Media Carotídea , Criança , Adulto , Adolescente , Humanos , Estudos Prospectivos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Artéria Carótida Primitiva/diagnóstico por imagem , Cognição
4.
Artigo em Inglês | MEDLINE | ID: mdl-38236679

RESUMO

Cascaded dual-polarity waves (CDWs) imaging increases the signal-to-noise ratio (SNR) by transmitting trains of pulses with different polarity order, which are combined via decoding afterward. This potentially enables velocity vector imaging (VVI) in more challenging SNR conditions. However, the motion of blood in between the trains will influence the decoding process. In this work, the use of CDW for blood VVI is evaluated for the first time. Dual-angle, plane wave (PW) ultrasound, CDW-coded, and noncoded conventional PW (cPW), was acquired using a 7.8 MHz linear array at a pulse repetition frequency (PRF) of 8 kHz. CDW-channel data were decoded prior to beamforming and cross correlation-based compound speckle tracking for VVI. Simulations of single scatterer motion show a high dependence of amplitude gain on the velocity magnitude and direction for CDW-coded transmissions. Both simulations and experiments of parabolic flow show increased SNRs for CDW imaging. As a result, CDW outperforms cPW VVI in low SNR conditions, based on both bias and standard deviation (SD). Quantitative linear regression and qualitative analyses of simulated realistic carotid artery blood flow show a similar performance of CDW and cPW for high SNR (14 dB) conditions. However, reducing the SNR to 6 dB, results in a root-mean-squared error 2.7× larger for cPW versus CDW, and an R2 of 0.4 versus 0.9. Initial in vivo evaluation of a healthy carotid artery shows increased SNR and more reliable velocity estimates for CDW versus cPW. In conclusion, this work demonstrates that CDW imaging facilitates improved VVI of deeper located carotid arteries.


Assuntos
Artérias Carótidas , Artéria Carótida Primitiva , Ultrassonografia/métodos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Artéria Carótida Primitiva/diagnóstico por imagem , Razão Sinal-Ruído , Movimento (Física) , Velocidade do Fluxo Sanguíneo/fisiologia , Imagens de Fantasmas
5.
Int J Sports Med ; 45(1): 23-32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37562444

RESUMO

This study aimed to investigate the acute effects of autoregulated and non-autoregulated applied pressures during blood flow restriction resistance exercise to volitional fatigue on indices of arterial stiffness using the Delfi Personalized Tourniquet System. Following a randomized autoregulated or non-autoregulated blood flow restriction familiarization session, 20 physically active adults (23±5 years; 7 females) participated in three randomized treatment-order sessions with autoregulated and non-autoregulated and no blood flow restriction training. Participants performed four sets of dumbbell wall squats to failure using 20% of one repetition maximum. Blood flow restriction was performed with 60% of supine limb occlusion pressure. Testing before and post-session included an ultrasonic scan of the carotid artery, applanation tonometry, and blood pressure acquisition.Carotid-femoral pulse wave velocity increased in the non-autoregulated and no blood flow restriction training groups following exercise while carotid-radial pulse wave velocity increased in the no blood flow restriction training group (all p<0.05). Carotid-femoral pulse wave velocity exhibited an interaction effect between autoregulated and non-autoregulated blood flow restriction in favor of autoregulated blood flow restriction (p<0.05). Autoregulated blood flow restriction training does not influence indices of arterial stiffness while non-autoregulated and no blood flow restriction training increases central stiffness.


Assuntos
Análise de Onda de Pulso , Rigidez Vascular , Adulto , Feminino , Humanos , Rigidez Vascular/fisiologia , Hemodinâmica , Pressão Sanguínea/fisiologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia
6.
Med Biol Eng Comput ; 62(4): 1165-1176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38155315

RESUMO

To investigate flow conditions in a double-layered carotid artery stent, a bench-top in vitro flow setup including a bifurcation phantom was designed and fabricated. The geometry of the tissue-mimicking phantom was based on healthy individuals. Two identical phantoms were created using 3D-printing techniques and molding with PVA-gel. In one of them, a clinically available CGuard double-layer stent was inserted. Measurements were performed using both continuous and pulsatile flow conditions. Blood flow studies were performed using echoPIV: a novel ultrasound-based technique combined with particle image velocimetry. A maximum deviation of 3% was visible between desired and measured flow patterns. The echoPIV measurements showed promising results on visualization and quantification of blood flow in and downstream the stent. Further research could demonstrate the effects of a double-layered stent on blood flow patterns in a carotid bifurcation in detail.


Assuntos
Artérias Carótidas , Hemodinâmica , Humanos , Artérias Carótidas/fisiologia , Reologia/métodos , Fluxo Pulsátil/fisiologia , Stents , Velocidade do Fluxo Sanguíneo/fisiologia
7.
Resuscitation ; 195: 110092, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104797

RESUMO

AIM: We used a wearable carotid Doppler patch to study carotid blood flow patterns in a porcine model of cardiac arrest to identify return of spontaneous circulation (ROSC) and hemodynamics associated with different arrhythmias and the quality of compressions. METHODS: Twenty Landrace pigs were used as models of cardiac arrest following a standard protocol. Carotid blood flow was monitored continuously using noninvasive ultrasound. Carotid spectral waveforms were captured during various arrhythmias and CPR. Typical carotid blood flow waveforms were recorded at the time of ROSC, and hemodynamic changes were compared with carotid blood flow parameters. RESULTS: The results showed that the carotid blood flow waveforms varied with ventricular arrhythmia type. During CPR, compression depth correlated significantly with carotid maximal velocity (Vmax) (Spearman correlation coefficient (r) = 0.682, P < 0.001) and velocity-time integral (VTI) (r = 0.794, P < 0.001). Vmax and VTI demonstrated moderate predictive value for survival. The regular carotid blood flow pattern towards the brain was observed during ROSC, concurrent with compression waveforms. After ROSC, VTI and carotid pulse volume (cPV) showed similar trends as stroke volume (SV). The carotid minute volume (cMV) exhibited a similar trend as cardiac output (CO). CONCLUSIONS: Carotid blood flow monitoring could provide valuable information about different arrhythmias as well as the quality of CPR. Carotid flow monitoring allows for timely and effective identification of ROSC. In addition, it may provide valuable hemodynamic information after ROSC.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Suínos , Animais , Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Hemodinâmica , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Arritmias Cardíacas , Modelos Animais de Doenças
8.
Rev. int. med. cienc. act. fis. deporte ; 23(93): 48-58, nov.- dec. 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-229995

RESUMO

This study aimed to determine whether primaryschool children can accurately monitor their heart rate (HR) through manual pulse measurement. Children aged 9 to 12 years manually assessed their HR through the carotid pulse three times in a physical education session; lying down, after submaximal effort and one minute later. Simultaneously, HR was measured by pulsometers. Of 417 children (10.58±0.93 years, 44.8% girls), 40% provided accurate values (<10% error). Concordance analysis showed wide limits of agreement (95% of measurements between 44.76% below and 78.64% above actual HR values). Sex, age and level of effort had no significant influence on the results. Primary school children are not able to accurately measure their HR through the carotid pulse (AU)


Este estudio tuvo como objetivodeterminar si los niños de primaria pueden controlar con precisión su frecuencia cardíaca (FC)mediante la medición manual del pulso. Niños de 9 a 12 años evaluaron manualmente su FC a través del pulso carotídeo tres veces en una sesión deeducación física; tumbados, trasun esfuerzo submáximo y un minuto después. Simultáneamente, se midió la FC mediante pulsómetros. De 417 niños (rango de edad 9 a 12 años, 44,8% niñas), un40% proporcionóvalores precisos (<10% de error). El análisis de concordancia mostró amplios límites de acuerdo (95% de las mediciones situadas entre un 44,76% por debajo y un 78,64% por encima de los valores reales de la FC). El sexo, la edad y el nivel de esfuerzo no tuvieron una influencia significativa en los resultados. Los niños de primaria no son capaces de medir con precisión su FC a través del pulso carotídeo (AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Frequência Cardíaca/fisiologia , Pulso Arterial/métodos , Teste de Esforço , Artérias Carótidas/fisiologia
9.
Cardiovasc Eng Technol ; 14(6): 840-852, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973700

RESUMO

INTRODUCTION: In vivo estimation of material properties of arterial tissue can provide essential insights into the development and progression of cardiovascular diseases. Furthermore, these properties can be used as an input to finite element simulations of potential medical treatments. MATERIALS AND METHODS: This study uses non-invasively measured pressure, diameter and wall thickness of human common carotid arteries (CCAs) acquired in 103 healthy subjects. A non-linear optimization was performed to estimate material parameters of two different constitutive models: a phenomenological, isotropic model and a structural, anisotropic model. The effect of age, sex, body mass index and blood pressure on the parameters was investigated. RESULTS AND CONCLUSION: Although both material models were able to model in vivo arterial behaviour, the structural model provided more realistic results in the supra-physiological domain. The phenomenological model predicted very high deformations for pressures above the systolic level. However, the phenomenological model has fewer parameters that were shown to be more robust. This is an advantage when only the physiological domain is of interest. The effect of stiffening with age, BMI and blood pressure was present for women, but not always for men. In general, sex had the biggest effect on the mechanical properties of CCAs. Stiffening trends with age, BMI and blood pressure were present but not very strong. The intersubject variability was high. Therefore, it can be concluded that finding a representative set of parameters for a certain age or BMI group would be very challenging. Instead, for purposes of patient-specific modelling of surgical procedures, we currently advise the use of patient-specific parameters.


Assuntos
Doenças Cardiovasculares , Caracteres Sexuais , Humanos , Feminino , Masculino , Artéria Carótida Primitiva/fisiologia , Pressão Sanguínea/fisiologia , Artérias Carótidas/fisiologia
10.
PLoS One ; 18(10): e0285228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883430

RESUMO

Analysis of cardiovascular waveforms provides valuable clinical information about the state of health and disease. The intrinsic frequency (IF) method is a recently introduced framework that uses a single arterial pressure waveform to extract physiologically relevant information about the cardiovascular system. The clinical usefulness and physiological accuracy of the IF method have been well-established via several preclinical and clinical studies. However, the computational complexity of the current L2 optimization solver for IF calculations remains a bottleneck for practical deployment of the IF method in real-time settings. In this paper, we propose a machine learning (ML)-based methodology for determination of IF parameters from a single carotid waveform. We use a sequentially-reduced Feedforward Neural Network (FNN) model for mapping carotid waveforms to the output parameters of the IF method, thereby avoiding the non-convex L2 minimization problem arising from the conventional IF approach. Our methodology also includes procedures for data pre-processing, model training, and model evaluation. In our model development, we used both clinical and synthetic waveforms. Our clinical database is composed of carotid waveforms from two different sources: the Huntington Medical Research Institutes (HMRI) iPhone Heart Study and the Framingham Heart Study (FHS). In the HMRI and FHS clinical studies, various device platforms such as piezoelectric tonometry, optical tonometry (Vivio), and an iPhone camera were used to measure arterial waveforms. Our blind clinical test shows very strong correlations between IF parameters computed from the FNN-based method and those computed from the standard L2 optimization-based method (i.e., R≥0.93 and P-value ≤0.005 for each IF parameter). Our results also demonstrate that the performance of the FNN-based IF model introduced in this work is independent of measurement apparatus and of device sampling rate.


Assuntos
Coração , Aprendizado de Máquina , Pressão Arterial , Redes Neurais de Computação , Artérias Carótidas/fisiologia
11.
Am J Physiol Heart Circ Physiol ; 325(4): H665-H672, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37565259

RESUMO

This study sought to determine to what extent acute exposure to microgravity (0 G) and related increases in central blood volume (CBV) during parabolic flight influence the regional redistribution of intra and extra cranial cerebral blood flow (CBF). Eleven healthy participants performed during two parabolic flights campaigns aboard the Airbus A310-ZERO G aircraft. The response of select variables for each of the 15 parabolas involving exposure to both 0 G and hypergravity (1.8 G) were assessed in the seated position. Mean arterial blood pressure (MAP) and heart rate (HR) were continuously monitored and used to calculate stroke volume (SV), cardiac output ([Formula: see text]), and systemic vascular resistance (SVR). Changes in CBV were measured using an impedance monitor. Extracranial flow through the internal carotid, external carotid, and vertebral artery ([Formula: see text]ICA, [Formula: see text]ECA, and [Formula: see text]VA), and intracranial blood velocity was measured by duplex ultrasound. When compared with 1-G baseline condition, 0 G increased CBV (+375 ± 98 mL, P = 0.004) and [Formula: see text] (+16 ± 14%, P = 0.024) and decreased SVR (-7.3 ± 5 mmHg·min·L-1, P = 0.002) and MAP (-13 ± 4 mmHg, P = 0.001). [Formula: see text]ECA increased by 43 ± 46% in 0 G (P = 0.030), whereas no change was observed for CBF, [Formula: see text]ICA, or [Formula: see text]VA (P = 0.102, P = 0.637, and P = 0.095, respectively).NEW & NOTEWORTHY Our findings demonstrate that in microgravity there is a selective increase in external carotid artery blood flow whereas global and regional cerebral blood flow remained preserved. To what extent this reflects an adaptive, neuroprotective response to counter overperfusion remains to be established.


Assuntos
Artéria Carótida Externa , Ausência de Peso , Humanos , Artéria Carótida Externa/diagnóstico por imagem , Artéria Carótida Externa/fisiologia , Hemodinâmica , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Volume Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
12.
Physiol Rep ; 11(12): e15746, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37332094

RESUMO

Longitudinal motion of the carotid arterial wall, as measured with ultrasound, has shown promise as an indicator of vascular health. The underlying mechanisms are however not fully understood. We have found, in in vivo studies, that blood pressure has a strong relation to the antegrade longitudinal displacement in early systole. Further, we have identified that a tapered geometry and the intramural friction in-between two parts of a vessel wall influence the longitudinal displacement. We therefore studied the interaction between pressure, vessel geometry and intramural friction, tapered and straight ultrasound phantoms in a paralleled hydraulic bench study and corresponding numerical models. Profound antegrade longitudinal motion was induced in the innermost part of both tapered phantoms and the numerical models, but to a lesser extent when intramural friction was increased in the simulations. Strong correlations (R = 0.82-0.96; p < 1e-3; k = 9.3-14 µm/mmHg) between longitudinal displacement and pulse pressure were found in six of seven regions of interest in tapered phantoms. The motion of the straight phantom and the corresponding numerical model was smaller, on average zero or close to zero. This study demonstrates that tapering of the lumen, low intramural friction, and pressure might be important conducive features to the antegrade longitudinal motion of the arterial wall in vivo.


Assuntos
Artérias Carótidas , Fricção , Análise de Elementos Finitos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Ultrassonografia , Pressão Sanguínea/fisiologia
13.
J Vis Exp ; (194)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184262

RESUMO

The ability of an organism to maintain a constant blood flow to the brain in response to sudden surges in systemic blood pressure (BP) is known as cerebral autoregulation (CAR), which occurs in the carotid artery. In contrast to full-term neonates, preterm neonates are unable to reduce the cerebral blood flow (CBF) in response to increased systemic BP. In preterm neonates, this exposes the fragile cerebral vessels to high perfusion pressures, leading to their rupture and brain damage. Ex vivo studies using wire myography have demonstrated that carotid arteries from near-term fetuses constrict in response to the activation of adrenergic alpha1 receptors. This response is blunted in the preterm fetus. Thus, to examine the role of alpha1-AR in vivo, presented here is an innovative approach to determine the effects of drugs on a carotid arterial segment in vivo in an ovine fetus during the developmental progression of gestation. The presented data demonstrate the simultaneous measurement of fetal blood flow and blood pressure. The perivascular delivery system can be used to conduct a long-term study over several days. Additional applications for this method could include viral delivery systems to alter the expression of genes in a segment of the carotid artery. These methods could be applied to other blood vessels in the growing organism in utero as well as in adult organisms.


Assuntos
Feto , Hemodinâmica , Ovinos , Animais , Estudos de Tempo e Movimento , Feto/fisiologia , Artérias Carótidas/fisiologia , Circulação Cerebrovascular
14.
Exp Physiol ; 108(10): 1245-1249, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37031381

RESUMO

NEW FINDINGS: What is the topic of this review? We review barosensory vessel mechanics and their role in blood pressure regulation across the lifespan. What advances does it highlight? In young normotensive men, aortic unloading mechanics contribute to the resting operating point of the vascular sympathetic baroreflex; however, with advancing age, this contribution is removed. This suggests that barosensory vessel unloading mechanics are not driving the well-documented age-related increase in resting muscle sympathetic nerve activity. ABSTRACT: An age-associated increase in arterial blood pressure is evident for apparently healthy humans. This is frequently attributed to stiffening of the central arteries and a concurrent increase in sympathetic outflow, potentially mediated by a reduced ability of the baroreceptive vessels to distend. This is supported, in part, by a reduced mechanical component of the vascular sympathetic baroreflex (i.e., a reduction in distension for a given pressure). Previous characterization of the mechanical component has assessed only carotid artery distension; however, evidence suggests that both the aortic and carotid baroreflexes are integral to blood pressure regulation. In addition, given that baroreceptors are located in the vessel wall, the change in wall tension, comprising diameter, pressure and vessel wall thickness, and the mechanics of this change might provide a better index of the baroreceptor stimulus than the previous method used to characterize the mechanical component that relies on diameter alone. This brief review summarizes the data using this new method of assessing barosensory vessel mechanics and their influence on the vascular sympathetic baroreflex across the lifespan.


Assuntos
Barorreflexo , Pressorreceptores , Masculino , Humanos , Barorreflexo/fisiologia , Pressão Sanguínea , Pressorreceptores/fisiologia , Artérias Carótidas/fisiologia , Sistema Nervoso Simpático/fisiologia , Homeostase , Frequência Cardíaca/fisiologia
15.
Clin Biomech (Bristol, Avon) ; 105: 105956, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37098301

RESUMO

BACKGROUND: Diseases associated with atherosclerotic plaques in the carotid artery are a major cause of deaths in the United States. Blood-flow-induced shear-stresses are known to trigger plaque formation. Prior literature suggests that the internal carotid artery sinus is prone to atherosclerosis, but there is limited understanding of why only certain patients are predisposed towards plaque formation. METHODS: We computationally investigate the effect of vessel geometry on wall-shear-stress distribution by comparing flowfields and wall-shear-stress-metrics between a low-risk and a novel predisposed high-risk carotid artery bifurcation anatomy. Both models were developed based on clinical risk estimations and patient-averaged anatomical features. The high-risk geometry has a larger internal carotid artery branching angle and a lower internal-to-carotid-artery-diameter-ratio. A patient-averaged physiological carotid artery inflow waveform is used. FINDINGS: The high-risk geometry experiences stronger flow separation in the sinus. Furthermore, it experiences a more equal flow split at the bifurcation, thereby reducing internal carotid artery flowrate and increasing atherosclerosis-prone low-velocity areas. Lowest time-averaged-wall-shear-stresses are present at the sinus outer wall, where plaques are often found, for both geometries. The high-risk geometry has significantly high, unfavorable oscillatory-shear-index values not found in the low-risk geometry. High oscillatory-shear-index areas are located at the vessels outside walls distal to the bifurcation and on the sinus wall. INTERPRETATION: These results highlight the effectiveness of oscillatory-shear-index, to augment classical time-averaged-wall-shear-stress, in evaluating pro-atherogenic geometry features. Furthermore, the flow split at the bifurcation is a promising clinical indicator for atherosclerosis risk as it can be directly accessed using clinical imaging, whereas shear-stress-metrics cannot.


Assuntos
Artérias Carótidas , Artéria Carótida Interna , Modelos Cardiovasculares , Aterosclerose , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/fisiologia , Estresse Mecânico , Hemodinâmica/fisiologia , Humanos
16.
J Appl Physiol (1985) ; 134(5): 1232-1239, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022965

RESUMO

Arterial wave reflection augments cardiac afterload increasing myocardial demands. Mathematical models and comparative physiology suggest that the lower limbs are the primary source of reflected waves; however, in vivo human evidence corroborating these observations is lacking. This study was designed to determine whether the vasculature of the lower or upper limbs contributes more to wave reflection. We hypothesized that lower limb heating will result in larger reductions in central wave reflection compared with upper limb heating due to local vasodilation of a larger microvascular bed. Fifteen healthy adults (8 females, 24 ± 3.6 yr) completed a within-subjects experimental crossover protocol with a washout period. The right upper and lower limbs were heated in a randomized order using 38°C water-perfused tubing with a 30-min break between protocols. Central wave reflection was calculated using pressure-flow relationships derived from aortic blood flow and carotid arterial pressure at baseline and after 30 min of heating. We observed a main effect of time for reflected wave amplitude (12.8 ± 2.7 to 12.2 ± 2.6 mmHg; P = 0.03) and augmentation index (-7.5 ± 8.9% to -4.5 ± 9.1%; P = 0.03). No significant main effects or interactions were noted for forward wave amplitude, reflected wave arrival time, or central relative wave reflection magnitude (all P values >0.23). Unilateral limb heating reduced reflected wave amplitude; however, the lack of a difference between conditions does not support the hypothesis that the lower limbs are the primary source of reflection. Future investigations should consider alternative vascular beds, such as splanchnic circulation.NEW & NOTEWORTHY Lower limb contributions to central wave reflections have been theorized without direct evidence in humans. In this study, mild passive heating was used to locally vasodilate either the right arm or leg to control local wave reflection sites. Heating in general reduced the reflected wave amplitude, but there were no differences between the arm or leg heating intervention, failing to provide support for the lower limbs as a primary contributor to wave reflection in humans.


Assuntos
Calefação , Vasodilatação , Adulto , Feminino , Humanos , Vasodilatação/fisiologia , Pressão Sanguínea/fisiologia , Hemodinâmica/fisiologia , Artérias Carótidas/fisiologia , Análise de Onda de Pulso
17.
Physiol Rep ; 11(7): e15628, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066977

RESUMO

Wall shear stress (WSS)-a key regulator of endothelial function-is commonly estimated in vivo using simplified mathematical models based on Poiseuille's flow, assuming a quasi-steady parabolic velocity distribution, despite evidence that more rapidly time-varying, pulsatile blood flow during each cardiac cycle modulates flow-mediated dilation (FMD) in large arteries of healthy subjects. More exact and accurate models based on the well-established Womersley solution for rapidly changing blood flow have not been adopted clinically, potentially because the Womersley solution relies on the local pressure gradient, which is difficult to measure non-invasively. We have developed an open-source method for automatic reconstruction of unsteady, Womersley-derived velocity profiles, and WSS in conduit arteries. The proposed method (available online at https://doi.org/10.5281/zenodo.7576408) requires only the time-averaged diameter of the vessel and time-varying velocity data available from non-invasive imaging such as Doppler ultrasound. Validation of the method with subject-specific computational fluid dynamics and application to synthetic velocity waveforms in the common carotid, brachial, and femoral arteries reveals that the Poiseuille solution underestimates peak WSS 38.5%-55.1% during the acceleration and deceleration phases of systole and underestimates or neglects retrograde WSS. Following evidence that oscillatory shear significantly augments vasodilator production, it is plausible that mischaracterization of the shear stimulus by assuming parabolic flow leads to systematic underestimates of important biological effects of time-varying blood velocity in conduit arteries.


Assuntos
Artérias Carótidas , Hemodinâmica , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Angiografia , Ultrassonografia , Fluxo Pulsátil , Estresse Mecânico , Modelos Cardiovasculares
18.
J Appl Physiol (1985) ; 134(3): 508-514, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656985

RESUMO

Nutraceutical-based interventions hold promise to reduce blood pressure (BP) and arterial stiffness, which are two cardiovascular disease (CVD) risk factors. However, the effects of coconut sap powder (CSP), an Asian sweetener and novel nutraceutical, on BP and arterial stiffness in middle-aged and older adults (MA/O, ≥45 yr) has yet to be established. We hypothesized CSP will decrease BP and arterial stiffness in MA/O adults. In a double-blind, randomized, placebo-controlled study design, 19 (age 55.3 ± 2.1 yr) MA/O adults completed measures of brachial and carotid BP, and arterial stiffness [carotid-femoral pulse wave velocity (cfPWV), common carotid artery (CCA) ß-stiffness, compliance, distensibility, and Young's and Peterson's Elastic moduli] before and after 8 wk of CSP (1.5 g/day) or placebo (1.5 g/day). A two-way repeated-measures analysis of variance was used to compare group mean differences. Compared with placebo, CSP lowered brachial systolic BP (SBP) (CSP pre: 117.4 ± 2.9 vs. post: 109.0 ± 2.4 mmHg, P < 0.05), but not carotid SBP (P = 0.12). CSP also lowered Young's (CSP pre: 5,514.4 ± 1,115.4 vs. post: 3,690.6 ± 430.9 kPa) and Peterson's elastic moduli (CSP pre: 22.2 ± 4.4 vs. post: 19.2 ± 4.5 kPa) (P < 0.05, both). A trend for CSP to lower CCA ß-stiffness (P = 0.06) and increase CCA compliance (P = 0.07) was also observed. Arterial stiffness assessed by cfPWV did not change (P > 0.05). No inflammatory or antioxidant biomarkers were affected by CSP. In summary, 8 wk of CSP lowers brachial SBP and CCA mechanical stiffness indicating a potential cardioprotective effect in MA/O adults.NEW & NOTEWORTHY Blood pressure (BP) and arterial stiffness are important predictors of cardiovascular health with aging. Nutraceuticals are an easy-to-implement lifestyle strategy demonstrating promise to effectively lower BP and arterial stiffness with aging and ultimately cardiovascular disease risk. We demonstrate that coconut sap powder (CSP), a traditional Asian sweetener, lowers brachial systolic BP and carotid artery mechanical stiffness in middle-aged and older (MA/O) adults. These findings provide initial evidence for the CSP-related cardioprotective effects in MA/O adults.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Pessoa de Meia-Idade , Humanos , Idoso , Pressão Sanguínea/fisiologia , Rigidez Vascular/fisiologia , Cocos , Projetos Piloto , Açúcares , Análise de Onda de Pulso , Inflorescência , Pós , Artérias Carótidas/fisiologia , Edulcorantes
19.
Physiol Rep ; 11(2): e15580, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702558

RESUMO

The longitudinal motion of the arterial wall, that is, the displacement of the arterial wall along the artery, parallel to blood flow, is still largely unexplored. The magnitude and nature of putative changes in longitudinal motion of the arterial wall in response to physical activity in humans remain unknown. The aim of this study was therefore to study the longitudinal motion of the carotid artery wall during physical activity in healthy humans. Using in-house developed non-invasive ultrasonic methods, the longitudinal motion of the intima-media complex and the diameter changes of the right common carotid artery (CCA) in 40 healthy volunteers (20 volunteers aged 22-35 years; 20 volunteers aged 55-68 years) were assessed at rest and during submaximal supine bicycle exercise. In a subset of the subjects (n = 18) also intramural shear strain were analyzed. The longitudinal motion of the intima-media complex underwent marked changes in response to physical activity, already at low workload; with most evident a marked increase of the first antegrade displacement (p < 0.001) in early systole. Likewise, the corresponding shear strain also increased significantly (p = 0.004). The increase in longitudinal motion showed significant correlation to increase in blood pressure, but not to blood flow velocity or wall shear stress. In conclusion, physical activity markedly influences the longitudinal motion of the carotid artery wall in healthy humans already at low load. A possible "cushioning" function as well as possible implications for the function of the vasa vasorum, endothelium, and smooth muscle cells and extracellular matrix of the media, are discussed.


Assuntos
Artérias Carótidas , Carga de Trabalho , Humanos , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Primitiva/fisiologia , Espessura Intima-Media Carotídea , Pressão Sanguínea/fisiologia
20.
Ultrasonics ; 128: 106860, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36244088

RESUMO

It has been largely documented that local hemodynamic conditions, characterized by low and oscillating wall shear stresses, play a key role in the initiation and progression of vascular atherosclerotic lesions. Thus, investigation of the flow field in the carotid bifurcation can lead to early identification of vulnerable plaques. In this scenario, the development of novel non-invasive imaging tools that can be used in routine clinical practice to identify disturbed and recirculating blood flow becomes crucial. In this context, Vector Flow Imaging is becoming a relevant tool as it provides an angle independent assessment of blood flow velocity and multidimensional flow vector visualization. The purpose of the present study was to validate, in several locations of the carotid bifurcation, the high-frame rate vector flow imaging (HiFR-VFI) technique by comparing with computational fluid dynamic simulations (CFD). In all eight carotid bifurcations, HiFR-VFI accurately detected regions of laminar flow as well as recirculation and unsteady flow areas. An accurate and statistically significant agreement was observed between velocity vectors obtained by HiFR-VFI and those computed by CFD, both for vector magnitude (R = 0.85) and direction (R = 0.74). Our study demonstrated that HiFR-VFI is a valid technique for rapid and advanced visual representation of velocity field in large arteries. Thus, it has a great potential in research-based clinical practice for the identification of flow recirculation, low and oscillating velocity gradients near vessel wall. The use of HiFR-VFI may provide a great improvement in the investigation of the role of local hemodynamics in vascular pathologies, as well in the assessment of the effect of pharmacological treatments.


Assuntos
Artérias Carótidas , Hidrodinâmica , Simulação por Computador , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Velocidade do Fluxo Sanguíneo , Hemodinâmica/fisiologia , Modelos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...